

CANUSB

Leistungsstarkes VCI

CANUSB

Der CANUSB ist ein leistungsstarkes VCI mit USB-Schnittstelle und zahlreichen Ausstattungsmöglichkeiten. Er ermöglicht die Übertragung von CAN Daten zwischen Desktop PC oder Notebook und dem CAN Bus. Er ist damit ein äußerst flexibles und einfach zu handhabendes Werkzeug zur Erfassung von CAN Daten und Überwachung ganzer Netzwerke.

Key Features

Stoßfestes Aluminium-Stangpressgehäuse

1 oder 2 galv. getrennte CAN Kanäle mit 1 Mbit/s Transferleistung bei 90 % Buslast

Hot Plug and Play sorgt für schnelle und komfortable Inbetriebnahme

MT-API ermöglicht Zugriff auf CAN Bus für eigene Applikationen

Optionale Variante mit Error-Frame-Erkennung

Ideal für den Einsatz am PC oder Notebook

Gehäuse

Das VCI ist aus einem Aluminium-Stangpressgehäuse gefertigt. Aufgrund des kompakten Designs und der hohen Stoßfestigkeit wird es äußerst erfolgreich in verschiedenen Bereichen der Automatisierungs- und Automotive Industrie eingesetzt.

CAN Kanäle

Es verfügt wahlweise über ein oder zwei galvanisch getrennte CAN Kanäle nach ISO 11898-2 mit einer Transferleistung von 1 Mbit/s bei 90 % Buslast. Die CAN Schnittstellen sind jeweils galvanisch getrennt und über einen 7-poligen Rundstecker ausgeführt.

Flexibilität bei der Datenerfassung

Mit der USB 2.0 Schnittstelle kann der CANUSB an jedem Notebook und Desktop PC betrieben werden. Sein Einsatz ist durch das Hot Plug and Play System noch schneller und effizienter, sodass er ohne Restart des PC in Betrieb genommen werden kann.

CPU und Firmware-Update

Der STAR12 von Motorola und der PDIUSBD12 von Philips garantieren eine schnelle Datenverarbeitung. Es werden sowohl CAN 2.0 A als auch CAN 2.0 B

Technische Daten

CPU CAN	Motorola Star12, 16-Bit
CPU USB	Philips PDIUSB12
CAN	1× CAN Schnittstelle gemäß ISO 11898-2, galv. getrennt (optional 2× CAN)
USB	1× USB 2.0
CAN Anschluss	1×7-pol. Rundstecker
USB Anschluss	1× Standard USB Stecker Typ A
Kabel CAN	optional 2 m CANUSB Kabel
Kabel USB	1 m Standard USB
Max. Datentransfer	1 Mbit/s bei 90 % Buslast
Error Frame Erkennung	optional
Analoge Pegelmessung	integriert
LEDs	2× 3fach 3 mm LED gewinkelt
Abmessungen (l×b×h)	100 mm × 57 mm × 32 mm
Gewicht	166 g
Gehäuse	Massives Aluminium
Betriebstemperatur	0 °C bis +70 °C
Lagertemperatur	−20°C bis +85°C
Rel. Luftfeuchtigkeit	20% – 90% nicht kondensierend
Stromaufnahme	max. 350 mA bei 5 V
Stromversorgung	über USB Schnittstelle

Steckerbelegung

CAN

US	USB Status
CS1	CAN Status 1
C1	CAN 1 receive / transmit Tätigkeit
GS	Gerätestatus
CS2	CAN Status 2
C2	CAN 2 receive / transmit Tätigkeit
1	CAN2 low
2	CAN2 high
3	=
4	CAN1 low
5	CAN1 high
6	=
7	CAN GND

1	VCC (VBUS)	
2	Daten	
3	+ Daten	
4	CND	

Bestellinformation

V930204000	CANUSB, 2× CAN, Errorframe, Pegelmessung
V930205000	CANUSB, 2× CAN, Errorframe
V930206000	CANUSB, 2× CAN
V930207000	CANUSB, 1× CAN, Errorframe, Pegelmessung
V930208000	CANUSB, 1× CAN, Errorframe
V930209000	CANUSB, 1× CAN
V930220000	CANUSB Kabel, 2 m, 120 Ohm
V930220100	CANUSB Kabel, 2 m, (2× D-Sub9 male)

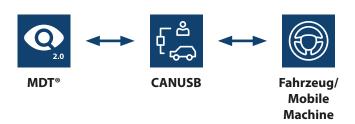
unterstützt. Das VCI kann mit Windows bis zu XP, XP embedded, Vista und 7 betrieben werden. Das Firmware-Update erfolgt direkt über die USB-Schnittstelle.

Error Frame Erkennung

Mithilfe dieses optionalen Features ist der CANUSB in der Lage, die Fehlersuche und Diagnose in einem CAN Netzwerk zu übernehmen. Das Interface besitzt eine eigene Logik, die Error Frames erkennt und in einem internen Speicher zählt. So können sporadische Fehler, wie zum Beispiel die Verfälschung von Nachrichten durch einen Teilnehmer im Netzwerk erkannt werden.

Pegelmessung

Dieses Feature ermöglicht es, die CAN Pegel analog einzulesen und so zum Beispiel Fehlerdiagnose an einem Fahrzeug oder einer Maschine zu betreiben. Es ist vor allem wichtig, wenn dem Netzwerk Daten verloren gehen, was z. B. durch Kurzschlüsse hervorgerufen werden kann.


Programmierschnittstelle

Mit der CANapi ist ein Zugriff auf den CAN Bus für eine eigene Applikation möglich. Hierzu wird standardmäßig die SiECA132 MT-CANapi mit vier simultanen Handles bereitgestellt.

Die Modulare Diagnose Toolkette von Sontheim

Mithilfe der verschiedenen Interfaces und der Sontheim Diagnose-Tools können Sie Ihre persönliche Diagnoselösung für den Automotivebereich erstellen. Mit der Verknüpfung von Hardware und Software können Sie beispielsweise:

- · CAN Daten darstellen, überwachen und prüfen
- Ganze CAN Netzwerke parametrieren, steuern und regeln
- Fahrzeugdiagnose betreiben
- Steuergeräte flashen

Mobile Automation

Industrial Automation

Diagnose

Connectivity

Wir freuen uns auf Ihre Anfrage!

Sontheim Industrie Elektronik GmbH

Georg-Krug-Straße 2 D-87437 Kempten

Telefon: +49 (0) 831 575900-0 Fax: +49 (0) 831 575900-72

Email: info@s-i-e.de

Sontheim Electronic Systems L.P.

201 West 2nd Street Davenport, IA 52801, USA Telefon: +1 563 888 1471

Email: info@sontheim-esys.com

www.s-i-e.de